SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage

نویسندگان

  • Sonia Brun
  • Neus Abella
  • Maria T Berciano
  • Olga Tapia
  • Montserrat Jaumot
  • Raimundo Freire
  • Miguel Lafarga
  • Neus Agell
چکیده

We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells.

PURPOSE Oxidative damage is one of the major factors associated with the formation of age-related cataract and with senescence of various cell types. Although the effects of oxidative stress are complex, we focused on whether oxidative damage affects control of the cell cycle in lens epithelial cells. METHODS BrdU labeling and FACS analysis were used to investigate the effect of H2O2 on the c...

متن کامل

P21Cip1 is a critical mediator of the cytotoxic action of thymidylate synthase inhibitors in colorectal carcinoma cells.

We have demonstrated previously that interferon (IFN)-gamma sensitizes human colon carcinoma cell lines to the cytotoxic effects of 5-fluorouracil combined with leucovorin and to the thymidylate synthase inhibitor, ZD9331, dependent on thymineless stress-induced DNA damage, independent of p53. Here we demonstrate that the cyclin-dependent kinase (CDK) inhibitor p21(Cip1) regulates thymineless s...

متن کامل

KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress

Expression of E7 proteins encoded by carcinogenic, high-risk human papillomaviruses (HPVs) triggers increased expression of the histone H3 lysine 27 demethylase KDM6A. KDM6A expression is necessary for survival of high-risk HPV E7 expressing cells, including several cervical cancer lines. Here we show that increased KDM6A in response to high-risk HPV E7 expression causes epigenetic de-repressio...

متن کامل

p21cip1 Degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7.

The human papillomavirus (HPV) E7 protein promotes S-phase reentry in a fraction of postmitotic, differentiated keratinocytes. Here we report that these cells contain an inherent mechanism that opposes E7-induced DNA replication. In organotypic raft cultures of primary human keratinocytes, neither cyclin E nor p21cip1 is detectable in situ. However, E7-transduced differentiated cells not in S p...

متن کامل

p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect.

Epidemiological observations indicate that resveratrol, a natural antioxidant stilbene, exerts cardioprotective and chemopreventive effects. Moreover, the molecule induces in vitro cell growth inhibition and differentiation. Using human erythroleukemic K562 cells as model system, we demonstrated that resveratrol induces a remarkable gamma-globin synthesis, the erythroid differentiation being li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017